Table of contents

Here are a set of tables to pick the correct size of drill to tape threads. They are similar tables with a small twist on how the drill is picked. This is a table of contents to the following pages. The drills used for US are numbered, lettered and fractions. Some tables have added the drill sizes in 0.1 mm increments

The best recommended tables to use for picking a drill is on page 8 because it does not use the uncommon letter size drills. US and metric drill have been included for all the tapes listed. Most hardware store at the present only carry number and fraction sizes drills. Metric size drills will be coming in the future.

For most common usage 75% thread remaining is the general recommendation. A fast and general rule is take the diameter and subtract the pitch, the distance between threads or one divided by the threads per inch. As an example start with a 1032 screw. First you need to know that the diameter is .190 inch. To do this take the size and multiply it by .013 " and add .060 ", this is not common knowledge. Then the pitch is $1 / 32$ or .03125 " or about .031 ", this also take some effort. Now take .190 " and subtract .031 which leave .159 " for a required drill. Now you must look up in a table and find that a number 21 drill just happens to be .159 the correct size. Now lets look at the metric world. Take a 5.8 screw, it is 5 mm in diameter and the pitch is 0.8 mm so 5 subtract 0.8 you have 4.2 mm so that is the required dirll.

Page

2 The closes drill to match the hole using US drills but no letter drills and metric drills
3 The closes drill to match the hole using US and letter drills but no metric drills
4 The correct calculated value required for each 5% step 100 \# to 50%.
5 The closes drill to match the hole using US and letter drills but no metric drills for each 5\% step 100\# to 50\%.
6 Shows all US drills with percent that fall between 50% to 100%
7-8 A two page listing with drill and percent created for each calculated 5% step 100 \# to 50%.
9 The closes drill to match the hole using US drills but no letter drills and metric drills, with error and percent.
10 The closes drill to match the hole using US drills but no letter drills and metric drills with percent.
11 The closes drill to match the hole using US drills but no letter drills and metric drills with percent.
12 US and metric drill sizes in US inches shorter list.
13-14 The complete drill table up to 1 inch.

Here are the sizes of drill required to produce the required size for tapping the required thread. For each line the first part is the size of screw followed by the threads per inch or in metric the pitch. For example 440 is a size 4 screw with 40 threads per inch. While M 20.40 is a metric 2 mm with a 0.40 mm pitch, the distances between one peak to the next. Depending on what kind of material being tapped the size of hole will vary. When taping by hand use 90% to 50% and when using power tools use 80% through 50%. The most common used size drill is group 2. For sheet brass, sheet nickel, babbitt, white metal, hard rubber use group 1. For mild steel, aluminum, cast iron, and cast brass use group 2. For bronze, tool steel, drop forging, stainless steel, cast steel, nickel, and copper use group 3. This table lists the next available American drill except for the letter drills use the next larger size. Pick the group best suited for you work pick either drill listed. Metric drills have been add as they will become more available. Note letter drills have been substituted for the next larger fractional drill.

Here are the sizes of drill required to produce the required size for tapping the required thread. For each line the first part is the size of screw followed by the threads per inch or in metric the pitch. For example 440 is a size 4 screw with 40 threads per inch. While M 20.40 is a metric 2 mm with a 0.40 mm pitch, the distances between one peak to the next. Depending on what kind of material being tapped the size of hole will vary. When taping by hand use 90% to 50% and when using power tools use 80% through 50%. The most common used size drill is group 2 . For sheet brass, sheet nickel, babbitt, white metal, hard rubber use group 1. For mild steel, aluminum, cast iron, and cast brass use group 2. For bronze, tool steel, drop forging, stainless steel, cast steel, nickel, and copper use group 3. This table lists the next available American drill except for the letter drills use the next larger size. Pick the group best suited for you work pick either drill listed. Metric drills have been add as they will become more available.

Here are the sizes of drill required to produce the required size for tapping the required thread. For each line the first part is the size of screw followed by the threads per inch or in metric the pitch. For example 440 is a size 4 screw with 40 threads per inch. While M 20.40 is a metric 2 mm with a 0.40 mm pitch, the distances between one peak to the next. Depending on what kind of material being tapped the size of hole will vary. When taping by hand use 90% to 50% and when using power tools use 80% through 50%. The most common used size drill is 75%. For sheet brass, sheet nickel, babbitt, white metal, hard rubber use 75% to 80%. For mild steel, aluminum, cast iron, and cast brass use 70% to 75%. For bronze, tool steel, drop forging, stainless steel, cast steel, nickel, and copper use 65% to 70%. This table list the actual size of drill wanted there may not be an exact match use the next large drill you can purchase.

		ize	di	100\%	95\%	9	85	80\%	75\%	70\%	65\%	60\%	55\%	50\%
	00	90	. 0470	. 0326	0333	. 0340	0347	0355	. 0362	. 0369	. 0376	. 0383	0391	0398
	0	80	. 0600	. 0438	. 0446	. 0454	0462	0470	0478	0486	0494	0503	0511	9
	1	72	. 0730	. 0550	. 0559	. 0568	. 0577	0586	. 0595	. 0604	0613	0622	0631	0640
	2	64	. 0860	. 0657	. 0667	. 0677	. 0687	0698	. 0708	. 0718	. 0728	. 0738	. 0748	0759
	3	56	. 0990	. 0758	. 0770	. 0781	. 0793	0804	0816	0828	0839	0851	0862	0874
	4	40	. 1120	. 0795	. 0811	0828	0844	0860	0876	0893	0909	0925	0941	0958
	6	32	. 1380	. 0974	. 0994	101	1035	1055	1076	1096	1116	1136	57	7
	8	32	. 1640	. 1234	1254	1	1295	15	1336	1356	1376	1396	1417	1437
	10	24	. 1900	. 1359	. 1386	. 1413	1440	1467	. 1494	. 1521	. 1548	. 1575	1602	1629
	10	32	1900	. 1494	1514	1535	1555	1575	1596	1616	1636	1656	1677	1697
	12	24	. 2160	. 1619	46	1673	1700	1727	1754	1781	1808	1835	862	89
	12	28	. 21	. 1696	. 1719	1	1	1789	18	1835	1858	1882	1905	8
		20	. 2500	. 1850	1883	1915	1948	1980	. 2013	5	. 2078	. 2110	2143	5
	$1 /$	28	. 2500	. 2036	2059	2082	2106	2129	2152	2175	2198	2222	2245	2268
	5/16	18	. 3125	. 2403	2439	2475	2512	2548	2584	2620	2656	2692	2728	64
	5/16	24	. 3125	. 2584	. 2611	. 2638	. 2665	2692	. 2719	. 2746	. 2773	. 2800	2827	2854
	$3 / 8$	16	. 3750	. 2938	. 2979	. 3019	. 3060	3100	. 3141	. 3182	. 3222	. 3263	3303	3344
	3/8	24	. 3750	. 3209	3236	3263	3290	3317	3344	3371	3398	3425	3452	479
	7/16	14	. 4375	. 3447	3494	3540	3586	3633	3679	25	2	18	65	3911
	7/16	20	. 4375	. 3725	3758	. 3790	3823	3855	3888	3920	3953	3985	4018	50
	1/2	13	. 5000	. 4001	. 4051	. 4101	. 4151	4201	4251	. 4301	. 4350	. 4400	. 4450	4500
	$1 /$	20	. 5000	. 4350	. 4383	. 4415	. 4448	4480	. 4513	4545	4578	. 4610	4643	75
	$5 /$	11	6250	. 5069	28	51	5246	5305	5364	23	82	5541	5600	60
	5/8	18	. 6250	. 5	5	5	5		5	5745	5781	5817	5853	89
	2	0.40	. 0787	. 0583	0593	. 0603	. 0614	0624	. 0634	. 0644	0654	0665	0675	0685
M	2	0.25	. 0787	. 0660	. 0666	. 0672	. 0679	0685	. 0692	0698	0704	0711	0717	0723
M	3	0.50	. 1181	. 0925	. 0938	. 0951	. 0964	097	0989	1002	1015	. 1028	1040	1053
M	3	0.35	. 1181	. 1002	. 1011	. 1020	1029	1038	. 1047	. 1056	. 1065	. 1074	1083	1092
M	4	0.70	. 1575	. 1217	. 1235	. 1253	1271	1288	. 1306	. 1324	. 1342	. 1360	. 1378	1396
M	4	0.50	1575	1319	1332	1345	1357	1370	1383	1396	1409	1421	1434	447
M	5	0.80	. 1969	. 1559	15	1600	1621	1	16	1682	1703	1723	1743	1764
M	5	0.50	. 1969	. 1713	. 1726	. 1738	1751	1764	. 17	. 1790	. 1802	. 1815	1828	1841
M	6	1.00	. 2362	. 1851	. 1876	. 1902	. 1927	. 1953	. 1979	. 2004	. 2030	. 2055	. 2081	. 2106
M	6	0.75	. 2362	1979	1998	2017	2036	2055	2075	. 2094	. 2113	. 2132	2151	2170
M	7	1.00	. 2756	. 2244	. 227	2296	2321	2347	. 237	. 2398	. 2423	2449	2475	2500
M	7	0.75	. 2756	. 23	. 2392	. 2	2430	2449	. 2468	. 2487	. 2507	. 2526	2545	2564
,	8	1.25	. 3150	. 2510	. 2542	. 2574	. 2606	. 2638	. 2670	. 2702	. 2734	. 2766	. 2798	. 2830
M	8	1.00	. 3150	. 2638	. 2664	. 2689	2715	2740	. 2766	. 2792	. 2817	. 2843	. 2868	2894
M	8	0.75	. 3150	. 2766	. 2785	. 2804	. 2824	. 2843	. 2862	. 2881	. 2900	. 2919	2939	2958
M	10	1.50	. 3937	. 3170	. 3208	. 3247	3285	3323	3362	3400	. 3438	. 3477	3515	3553
M	10	1.25	. 3937	. 3298	. 3330	. 3362	. 3394	3426	. 3458	. 3490	. 3521	. 3553	3585	3617
M	10	1.00	. 3937	. 3426	. 3451	. 3477	. 3502	3528	. 3553	. 3579	. 3605	. 3630	. 3656	3681
M	10	0.75	. 3937	. 3553	. 3573	. 3592	3611	3630	3649	. 3669	. 3688	. 3707	3726	. 3745
M	12	1.75	. 4724	. 3829	. 3874	. 3919	. 3964	4008	. 4053	. 4098	. 4143	. 4187	. 4232	4277
M	12	1.50	. 4724	. 3957	.3996	. 4034	. 4072	4111	. 4149	. 4187	. 4226	. 4264	4302	4341
M	12	1.25	. 4724	. 4085	. 4117	. 4149	. 4181	. 4213	. 4245	. 4277	. 4309	. 4341	. 4373	. 4405
M	12	1.00	. 4724	. 4213	4239	. 4264	4290	4315	4341	4366	4392	4418	4443	4469

Here are the sizes of drill required to produce the required size for tapping the required thread. For each line the first part is the size of screw followed by the threads per inch or in metric the pitch. For example 440 is a size 4 screw with 40 threads per inch. While M 20.40 is a metric 2 mm with a 0.40 mm pitch, the distances between one peak to the next. Depending on what kind of material being tapped the size of hole will vary. When taping by hand use $\mathbf{9 0 \%}$ to 50% and when using power tools use $\mathbf{8 0 \%}$ through $\mathbf{5 0 \%}$. The most common used size drill is $\mathbf{7 5 \%}$. For sheet brass, sheet nickel, babbitt, white metal, hard rubber use $\mathbf{7 5 \%}$ to $\mathbf{8 0 \%}$. For mild steel, aluminum, cast iron, and cast brass use 70% to 75%. For bronze, tool steel, drop forging, stainless steel, cast steel, nickel, and copper use $\mathbf{6 5 \%}$ to $\mathbf{7 0 \%}$. This table lists the next available American drill except for the letter drills use the next larger size.

| | Size | diam. | lo |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Here are the sizes of drill required to produce the required size for tapping the required thread. For each line the first part is the size of screw followed by the threads per inch or in metric the pitch. For example 440 is a size 4 screw with 40 threads per inch. While M 20.40 is a metric 2 mm with a 0.40 mm pitch, the distances between one peak to the next. Depending on what kind of material being tapped the size of hole will vary. When taping by hand use 90% to 50% and when using power tools use 80% through 50%. The most common used size drill is 75%. For sheet brass, sheet nickel, babbitt, white metal, hard rubber use 75% to 80%. For mild steel, aluminum, cast iron, and cast brass use 70% to 75%. For bronze, tool steel, drop forging, stainless steel, cast steel, nickel, and copper use 65% to 70%. This table lists the next available American drill except for the letter drills use the next larger size.

Here are the sizes of drill required to produce the required size for tapping the required thread. For each line the first part is the size of screw followed by the threads per inch or in metric the pitch. For example 440 is a size 4 screw with 40 threads per inch. While M 20.40 is a metric 2 mm with a 0.40 mm pitch, the distances between one peak to the next. Depending on what kind of material being tapped the size of hole will vary. When taping by hand use 90% to 50% and when using power tools use 80% through 50%. The most common used size drill is 75%. For sheet brass, sheet nickel, babbitt, white metal, hard rubber use 75% to 80%. For mild steel, aluminum, cast iron, and cast brass use 70% to 75%. For bronze, tool steel, drop forging, stainless steel, cast steel, nickel, and copper use 65% to 70%. This table lists the next available American drill except for the letter drills use the next larger size. The percent values after the drill size are the correct values for that drill.

Here are the sizes of drill required to produce the required size for tapping the required thread. For each line the first part is the size of screw followed by the threads per inch or in metric the pitch. For example 440 is a size 4 screw with 40 threads per inch. While M 20.40 is a metric 2 mm with a 0.40 mm pitch, the distances between one peak to the next. Depending on what kind of material being tapped the size of hole will vary. When taping by hand use 90% to 50% and when using power tools use 80% through 50%. The most common used size drill is 75%. For sheet brass, sheet nickel, babbitt, white metal, hard rubber use 75% to 80%. For mild steel, aluminum, cast iron, and cast brass use 70% to 75%. For bronze, tool steel, drop forging, stainless steel, cast steel, nickel, and copper use 65% to 70%. This table lists the next available American drill except for the letter drills use the next larger size. The percent values after the drill size are the correct values for that drill.

Here are the sizes of drill required to produce the required size for tapping the required thread. For each line the first part is the size of screw followed by the threads per inch or in metric the pitch. For example 440 is a size 4 screw with 40 threads per inch. While M 20.40 is a metric 2 mm with a 0.40 mm pitch, the distances between one peak to the next. Depending on what kind of material being tapped the size of hole will vary. When taping by hand use 90% to 50% and when using power tools use 80% through 50%. The most common used size drill is group 2 . For sheet brass, sheet nickel, babbitt, white metal, hard rubber use group 1. For mild steel, aluminum, cast iron, and cast brass use group 2. For bronze, tool steel, drop forging, stainless steel, cast steel, nickel, and copper use group 3. This table lists the next available American drill except for the letter drills use the next larger size. Pick the group best suited for you work pick either drill listed. Metric drills have been add as they will become more available. The percent values after the drill size are the correct values for that drill.

Size	diam			80\%			75\%			70\%			65\%	
00	90	. 0470	\# 64	0.0005	76\%	\# 64	-. 0002	76\%	\#63	0.0001	69\%	\#62	0.0004	62\%
0	80	. 0600	\#55	0.0050	49\%	\#55	0.0042	49\%	\#55	0.0034	49\%	\#55	0.0026	49\%
1	72	. 0730	\#53	0.0009	75\%	\#53	0.0000	75\%	1/16	0.0021	58\%	1/16	0.0012	58\%
2	64	. 0860	\#50	0.0002	79\%	\#49	0.0022	64\%	\#49	0.0012	64\%	\#49	0.0002	64\%
3	56	. 0990	\#46	0.0006	78\%	\#45	0.0004	73\%	\#44	0.0032	56\%	\#44	0.0021	56\%
4	40	. 1120	\#44	-. 0000	80\%	\#43	0.0014	71\%	\#43	-. 0003	71\%	\#42	0.0026	57\%
6	32	. 1380	\#36	0.0010	78\%	7/64	0.0018	70\%	7/64	-. 0002	70\%	\#34	-. 0006	67\%
8	32	. 1640	\#29	0.0045	69\%	\#29	0.0024	69\%	\#29	0.0004	69\%	\#28	0.0029	58\%
10	24	. 1900	\#26	0.0003	79\%	\#25	0.0001	75\%	\#24	-. 0001	70\%	\#23	-. 0008	67\%
10	32	. 1900	\#22	-. 0005	81\%	\#21	-. 0006	76\%	\#20	-. 0006	71\%	\#19	0.0024	59\%
12	24	. 2160	11/64	-. 0008	81\%	\#16	0.0016	72\%	\#15	0.0019	67\%	\#15	-. 0008	67\%
12	28	. 2160	\#15	0.0011	78\%	\#14	0.0008	73\%	\#13	0.0015	67\%	\#13	-. 0008	67\%
1/ 4	20	. 2500	\# 8	0.0010	79	\# 7	-. 0003	75\%	\# 6	-. 0005	71\%	\# 4	0.0012	63\%
1/ 4	48	. 2500	\# 3	0.0001	80\%	7/32	0.0036	67\%	7/32	0.0013	67\%	7/32	-. 0010	67\%
5/16	18	. 3125	F	0.0022	77\%	F	-. 0014	77\%	G	-. 0010	71\%	17/64	0.0000	65\%
5/16	- 24	. 3125	I	0.0028	75\%	I	0.0001	75\%	J	0.0024	66\%	J	-. 0003	66\%
	816	. 3750	5/16	0.0025	77\%	5/16	-. 0016	77\%	P	0.0048	64\%	P	0.0008	64\%
3/ 8	84	. 3750	Q	0.0003	79\%	R	0.0046	67\%	R	0.0019	67\%	R	-. 0008	67\%
7/16	14	. 4375	U	0.0047	75\%	U	0.0001	75\%	3/ 8	0.0025	67\%	V	-. 0002	65\%
7/16	620	. 4375	W	0.0005	79\%	25/64	0.0018	72\%	25/64	-. 0014	72\%	X	0.0017	62\%
1/ 2	13	. 5000	27/64	0.0018	78\%	7/16	0.0124	63\%	7/16	0.0074	63\%	7/16	0.0025	63\%
1/ 2	20	. 5000	29/64	0.0051	72\%	29/64	0.0018	72\%	29/64	-. 0014	72\%	15/32	0.0110	48\%
	11	. 6250	17/32	0.0008	79\%	35/64	0.0105	66\%	35/64	0.0046	66\%	35/64	-. 0013	66\%
5/ 8	818	. 6250	37/64	0.0108	65\%	37/64	0.0072	65\%	37/64	0.0036	65\%	37/64	0.0000	65\%
M 2	0.40	. 0787	1/16	0.0001	79\%	\#52	0.0001	74\%	\#51	0.0026	57\%	\#51	0.0016	57\%
M 2	0.25	. 0787	\#50	0.0015	68\%	\#50	0.0008	68\%	\#50	0.0002	68\%	\#49	0.0026	45\%
M 3	0.50	. 1181	\#40	0.0003	79\%	\#39	0.0006	73\%	\#38	0.0013	65\%	\#38	0.0000	65\%
M 3	0.35	. 1181	\#37	0.0002	79\%	\#36	0.0018	65\%	\#36	0.0009	65\%	\#36	0.0000	65\%
M 4	0.70	. 1575	\#30	-. 0003	81\%	\#29	0.0054	60\%	\#29	0.0036	60\%	\#29	0.0018	60\%
M 4	0.50	. 1575	\#28	0.0035	66\%	\#28	0.0022	66\%	\#28	0.0009	66\%	\#28	-. 0004	66\%
M 5	0.80	. 1969	\#19	0.0019	75\%	\#19	-. 0002	75\%	\#18	0.0013	67\%	\#18	-. 0008	67\%
M 5	0.50	. 1969	\#16	0.0006	78\%	\#16	-. 0007	78\%	\#15	0.0010	66\%	\#15	-. 0002	66\%
M 6	1.00	. 2362	\# 9	0.0007	79\%	\# 8	0.0011	73\%	\# 7	0.0006	69\%	13/64	0.0001	65\%
M 6	0.75	. 2362	\# 5	-. 0000	80\%	\# 4	0.0015	71\%	\# 4	-. 0004	71\%	\# 3	0.0017	61\%
M 7	1.00	. 2756	A	-. 0007	81\%	B	0.0008	74\%	C	0.0022	66\%	C	-. 0003	66\%
M 7	0.75	. 2756	D	0.0011	77\%	D	-. 0008	77\%	1/ 4	0.0013	67\%	1/ 4	-. 0007	67\%
M 8	1.25	. 3150	17/64	0.0018	77\%	17/64	-. 0014	77\%	I	0.0018	67\%	I	-. 0014	67\%
M 8	1.00	. 3150	J	0.0030	74\%	J	0.0004	74\%	K	0.0018	66\%	K	-. 0007	66\%
M 8	0.75	. 3150	L	0.0057	65\%	L	0.0038	65\%	L	0.0019	65\%	L	-. 0000	65\%
M 10	1.50	. 3937	Q	-. 0003	80\%	R	0.0028	71\%	R	-. 0010	71\%	11/32	-. 0000	65\%
M 10	1.25	. 3937	11/32	0.0012	78\%	11/32	-. 0020	78\%	S	-. 0010	71\%	T	0.0059	56\%
M 10	1.00	. 3937	T	0.0052	70\%	T	0.0027	70\%	T	0.0001	70\%	23/64	-. 0011	67\%
M 10	0.75	. 3937	U	0.0050	67\%	U	0.0031	67\%	U	0.0011	67\%	U	-. 0008	67\%
M 12	1.75	. 4724	Y	0.0032	76\%	Y	-. 0013	76\%	z	0.0032	66\%	Z	-. 0013	66\%
M 12	1.50	. 4724	Z	0.0019	77\%	Z	-. 0019	77\%	27/64	0.0032	66\%	27/64	-. 0007	66\%
M 12	1.25	. 4724	27/64	0.0006	79\%	7/16	0.0130	55\%	7/16	0.0098	55\%	7/16	0.0066	55\%
M 12	1.00	. 4724	7/16	0.0060	68\%	7/16	0.0034	68\%	7/16	0.0009	68\%	7/16	-. 0017	68\%

Here are the sizes of drill required to produce the required size for tapping the required thread. For each line the first part is the size of screw followed by the threads per inch or in metric the pitch. For example 440 is a size 4 screw with 40 threads per inch. While M 20.40 is a metric 2 mm with a 0.40 mm pitch, the distances between one peak to the next. Depending on what kind of material being tapped the size of hole will vary. When taping by hand use 90% to 50% and when using power tools use 80% through 50%. The most common used size drill is group 2 . For sheet brass, sheet nickel, babbitt, white metal, hard rubber use group 1. For mild steel, aluminum, cast iron, and cast brass use group 2. For bronze, tool steel, drop forging, stainless steel, cast steel, nickel, and copper use group 3. This table lists the next available American drill except for the letter drills use the next larger size. Pick the group best suited for you work pick either drill listed. Metric drills have been add as they will become more available. Note letter drills have been substituted for the next larger fractional drill. The percent values after the drill size are the correct values for that drill.

Size	diam.	80%					75\%
00	90	.0470	$\# 64$	0.0005	76%	$\# 64$	-.0002
0	80	.0600	$\# 55$	0.0050	49%	$\# 55$	0.0042
1	72	.0730	$\# 53$	0.0009	75%	$\# 53$	0.0000
2	64	.0860	$\# 50$	0.0002	79%	$\# 49$	0.0022
3	56	.0990	$\# 46$	0.0006	78%	$\# 45$	0.0004
4	40	.1120	$\# 44$	-.0000	80%	$\# 43$	0.0014
6	32	.1380	$\# 36$	0.0010	78%	$7 / 64$	0.0018
8	32	.1640	$\# 29$	0.0045	69%	$\# 29$	0.0024
10	24	.1900	$\# 26$	0.0003	79%	$\# 25$	0.0001
10	32	.1900	$\# 22$	-.0005	81%	$\# 21$	-.0006
12	24	.2160	$11 / 64$	-.0008	81%	$\# 16$	0.0016
12	28	.2160	$\# 15$	0.0011	78%	$\# 14$	0.0008
$1 / 4$	20	.2500	$\# 8$	0.0010	79%	$\# 7$	-.0003
$1 / 4$	28	.2500	$\# 3$	0.0001	80%	$7 / 32$	0.0036
$5 / 16$	18	.3125	$17 / 64$	0.0108	65%	$17 / 64$	0.0072
$5 / 16$	24	.3125	$9 / 32$	0.0121	58%	$9 / 32$	0.0094
$3 / 8$	16	.3750	$5 / 16$	0.0025	77%	$5 / 16$	-.0016
$3 / 8$	24	.3750	$11 / 32$	0.0121	58%	$11 / 32$	0.0094
$7 / 16$	14	.4375	$3 / 8$	0.0117	67%	$3 / 8$	0.0071
$7 / 16$	20	.4375	$25 / 64$	0.0051	72%	$25 / 64$	0.0018
$1 / 2$	13	.5000	$27 / 64$	0.0018	78%	$7 / 16$	0.0124
$1 / 2$	20	.5000	$29 / 64$	0.0051	72%	$29 / 64$	0.0018
$5 / 8$	11	.6250	$17 / 32$	0.0008	79%	$35 / 64$	0.0105
$5 / 8$	18	.6250	$37 / 64$	0.0108	65%	$37 / 64$	0.0072

M	2	0.40	. 0787	1/16	0.0001
M	2	0.25	. 0787	\#50	0.0015
M	3	0.50	. 1181	\#40	0.0003
M	3	0.35	. 1181	\#37	0.0002
M	4	0.70	. 1575	\#30	-. 0003
M	4	0.50	. 1575	\#28	0.0035
M	5	0.80	. 1969	\#19	0.0019
M	5	0.50	. 1969	\#16	0.0006
M	6	1.00	. 2362	\# 9	0.0007
M	6	0.75	. 2362	\# 5	-. 0000
M	7	1.00	. 2756	15/64	-. 0003
M	7	0.75	. 2756	1/ 4	0.0051
M	8	1.25	. 3150	17/64	0.0018
M	8	1.00	. 3150	9/32	0.0073
M	8	0.75	. 3150	19/64	0.0126
M	10	1.50	. 3937	11/32	0.0115
M	10	1.25	. 3937	11/32	0.0012
M	10	1.00	. 3937	23/64	0.0066
M	10	0.75	. 3937	3/ 8	0.0120
M	12	1.75	. 4724	13/32	0.0055
M	12	1.50	. 4724	27/64	0.0108
M	12	1.25	. 4724	27/64	0.0006
M	12	1.00	. 4724	7/16	0.0060

79%	\#52	0.0001
68%	\#50	0.0008
79%	$\# 39$	0.0006
79%	$\# 36$	0.0018
81%	$\# 29$	0.0054
66%	$\# 28$	0.0022
75%	$\# 19$	-.0002
78%	$\# 16$	-.0007
79%	$\# 8$	0.0011
80%	$\# 4$	0.0015
$81 \% 1 / 4$	0.0128	
67%	$1 / 4$	0.0032
77%	$17 / 64$	-.0014
66%	$9 / 32$	0.0047
47%	$19 / 64$	0.0107
65%	$11 / 32$	0.0076
78%	$11 / 32$	-.0020
67%	$23 / 64$	0.0041
49%	$3 / 8$	0.0101
74%	$13 / 32$	0.0010
66%	$27 / 64$	0.0070
79%	$7 / 16$	0.0130
68%	$7 / 16$	0.0034

76%	\#63	0.0001
49%	\#55	0.0034
75%	$1 / 16$	0.0021
64%	\#49	0.0012
73%	\#44	0.0032
71%	\#43	-.0003
70%	$7 / 64$	-.0002
69%	\#29	0.0004
75%	\#24	-.0001
76% \#20	-.0006	
$72 \% ~ \# 15$	0.0019	
73%	$\# 13$	0.0015

75\% \# 6 -. 0005 67\% 7/32 0.0013 65\% 17/64 0.0036 58\% 9/32 0.0067 77\% 21/64 0.0099 58\% 11/32 0.0067 67\% 3/ 80.0025 72\% 25/64 -. 0014 63\% 7/16 0.0074 72\% 29/64-. 0014 66\% 35/64 0.0046 65\% 37/64 0.0036

74%	$\# 51$	0.0026	57%	\#51	0.0016	57%
68%	$\# 50$	0.0002	68%	$\# 49$	0.0026	45%
73%	$\# 38$	0.0013	65%	$\# 38$	0.0000	65%
65%	$\# 36$	0.0009	65%	$\# 36$	0.0000	65%
60%	$\# 29$	0.0036	60%	$\# 29$	0.0018	60%
66%	$\# 28$	0.0009	66%	$\# 28$	-.0004	66%
75%	$\# 18$	0.0013	67%	$\# 18$	-.0008	67%
78%	$\# 15$	0.0010	66%	$\# 15$	-.0002	66%
73%	7	0.0006	69%	$13 / 64$	0.0001	65%
71%	$\# 4$	-.0004	71%	$\# 3$	0.0017	61%
50%	$1 / 4$	0.0102	50%	$1 / 4$	0.0077	50%
67%	$1 / 4$	0.0013	67%	$1 / 4$	-.0007	67%
77%	$9 / 32$	0.0111	53%	$9 / 32$	0.0079	53%
66%	$9 / 32$	0.0021	66%	$9 / 32$	-.0004	66%
47%	$19 / 64$	0.0088	47%	$19 / 64$	0.0069	47%
65%	$11 / 32$	0.0038	65%	$11 / 32$	-.0000	65%
78%	$23 / 64$	0.0104	54%	$23 / 64$	0.0073	54%
67%	$23 / 64$	0.0015	67%	$23 / 64$	-.0011	67%
49%	$3 / 8$	0.0081	49%	$3 / 8$	0.0062	49%
74%	$27 / 64$	0.0121	56%	$27 / 64$	0.0076	56%
66%	$27 / 64$	0.0032	66%	$27 / 64$	-.0007	66%
55%	$7 / 16$	0.0098	55%	$7 / 16$	0.0066	55%
68%	$7 / 16$	0.0009	68%	$7 / 16$	-.0017	68%

Here are the sizes of drill required to produce the required size for tapping the required thread. For each line the first part is the size of screw followed by the threads per inch or in metric the pitch. For example 440 is a size 4 screw with 40 threads per inch. While M 20.40 is a metric 2 mm with a 0.40 mm pitch, the distances between one peak to the next. Depending on what kind of material being tapped the size of hole will vary. When taping by hand use 90% to 50% and when using power tools use 80% through 50%. The most common used size drill is group 2 . For sheet brass, sheet nickel, babbitt, white metal, hard rubber use group 1. For mild steel, aluminum, cast iron, and cast brass use group 2. For bronze, tool steel, drop forging, stainless steel, cast steel, nickel, and copper use group 3. This table lists the next available American drill except for the letter drills use the next larger size. Pick the group best suited for you work pick either drill listed. Metric drills have been add as they will become more available. Note letter drills have been substituted for the next larger fractional drill.

Size			diam.		group		group 2		$\text { group } 3$			
			-				-					
					/			---	/-			-
	00	90	. 0470	\# 64	76\%	\# 64	76\%	\# 63	69\%	\# 62	62\%	
	0	80	. 0600	\#55	49\%	\#55	49\%	\#55	49\%	\#55	49\%	
	1	72	. 0730	\#53	75\%	\#53	75\%	1/16	58\%	1/16	58\%	
	2	64	. 0860	\#50	79\%	\#49	64\%	\#49	64\%	\#49	64\%	
	3	56	. 0990	\#46	78\%	\#45	73\%	\#44	56\%	\#44	56\%	
	4	40	. 1120	\#44	80\%	\#43	71\%	\#43	71\%	\#42	57\%	
	6	32	. 1380	\#36	78\%	7/64	70\%	7/64	70\%	\#34	67\%	
	8	32	. 1640	\#29	69\%	\#29	69\%	\#29	69\%	\#28	58\%	
	10	24	. 1900	\#26	79\%	\#25	75\%	\#24	70\%	\#23	67\%	
	10	32	. 1900	\#22	81\%	\#21	76\%	\#20	71\%	\#19	59\%	
	12	24	. 2160	11/64	81\%	\#16	72\%	\#15	67\%	\#15	67\%	
	12	28	. 2160	\#15	78\%	\#14	73\%	\#13	67\%	\#13	67\%	
	$1 / 4$	20	. 2500	\# 8	79\%	\# 7	75\%	\# 6	71\%	\# 4	63\%	
	$1 / 4$	28	. 2500	\# 3	80\%	7/32	67\%	7/32	67\%	7/32	67\%	
	5/16	18	. 3125	17/64	65\%	17/64	65\%	17/64	65\%	17/64	65\%	
	5/16	24	. 3125	9/32	58\%	9/32	58\%	9/32	58\%	9/32	58\%	
	$3 / 8$	16	. 3750	5/16	77\%	5/16	77\%	21/64	58\%	21/64	58\%	
	$3 / 8$	24	. 3750	11/32	58\%	11/32	58\%	11/32	58\%	11/32	58\%	
	7/16	14	. 4375	3/8	67\%	3/8	67\%	3/8	67\%	25/64	51\%	
	7/16	20	. 4375	25/64	72\%	25/64	72\%	25/64	72\%	13/32	48\%	
	1/2	13	. 5000	27/64	78\%	7/16	63\%	7/16	63\%	7/16	63\%	
	1/2	20	. 5000	29/64	72\%	29/64	72\%	29/64	72\%	15/32	48\%	
		11	. 6250	17/32	79\%	35/64	66\%	35/64	66\%	35/64	66\%	
	5/8	18	. 6250	37/64	65\%	37/64	65\%	37/64	65\%	37/64	65\%	
M	2	0.40	. 0787	1/16	79\%	\#52	74\%	\#51	57\%	\#51	57\%	
M	2	0.25	. 0787	\#50	68\%	\#50	68\%	\#50	68\%	\#49	45\%	
M	3	0.50	. 1181	\#40	79\%	\#39	73\%	\#38	65\%	\#38	65\%	
M	3	0.35	. 1181	\#37	79\%	\#36	65\%	\#36	65\%	\#36	65\%	
M	4	0.70	. 1575	\#30	81\%	\#29	60\%	\#29	60\%	\#29	60\%	
M	4	0.50	. 1575	\#28	66\%	\#28	66\%	\#28	66\%	\#28	66\%	
M	5	0.80	. 1969	\#19	75\%	\#19	75\%	\#18	67\%	\#18	67\%	
M	5	0.50	. 1969	\#16	78\%	\#16	78\%	\#15	66\%	\#15	66\%	
M	6	1.00	. 2362	\# 9	79\%	\# 8	73\%	\# 7	69\%	13/64	65\%	
M	6	0.75	. 2362	\# 5	80\%	\# 4	71\%	\# 4	71\%	\# 3	61\%	
M	7	1.00	. 2756	15/64	81\%	1/4	50\%	1/4	50\%	1/4	50\%	
M	7	0.75	. 2756	1/4	67\%	1/4	67\%	1/ 4	67\%	1/ 4	67\%	
M	8	1.25	. 3150	17/64	77\%	17/64	77\%	9/32	53\%	9/32	53\%	
M	8	1.00	. 3150	9/32	66\%	9/32	66\%	9/32	66\%	9/32	66\%	
M	8	0.75	. 3150	19/64	47\%	19/64	47\%	19/64	47\%	19/64	47\%	
M	10	1.50	. 3937	11/32	65\%	11/32	65\%	11/32	65\%	11/32	65\%	
M	10	1.25	. 3937	11/32	78\%	11/32	78\%	23/64	54\%	23/64	54\%	
M	10	1.00	. 3937	23/64	67\%	23/64	67\%	23/64	67\%	23/64	67\%	
M	10	0.75	. 3937	3/8	49\%	3/8	49\%	3/8	49\%	3/8	49\%	
M	12	1.75	. 4724	13/32	74\%	13/32	74\%	27/64	56\%	27/64	56\%	
M	12	1.50	. 4724	27/64	66\%	27/64	66\%	27/64	66\%	27/64	66\%	
M	12	1.25	. 4724	27/64	79\%	7/16	55\%	7/16	55\%	7/16	55\%	
M	12	1.00	. 4724	7/16	68\%	7/16	68\%	7/16	68\%	7/16	68\%	

This is a table of US and metric drills for comparison. For each entry there is the drill size followed by the US decimal equivalence.

\#80	0.0135	2.6 mm	0.1024	\# 7	0.2010	8.3 mm	0.3268	12.4 mm	0.4882
\#79	0.0145	\#37	0.1040	13/64	0.2031	21/64	0.3281	12.5 mm	0.4921
\#78	0.0160	2.7 mm	0.1063	\# 6	0.2040	8.4 mm	0.3307	12.6 mm	0.4961
\#77	0.0180	\#36	0.1065	5.2 mm	0.2047	2	0.3320	1/ 2	0.5000
\#76	0.0200	7/64	0.1094	\# 5	0.2055	8.5 mm	0.3346	12.7 mm	0.5000
\#75	0.0210	\#35	0.1100	5.3 mm	0.2087	8.6 mm	0.3386	12.8 mm	0.5039
\#74	0.0225	2.8 mm	0.1102	\# 4	0.2090	R	0.3390	12.9 mm	0.5079
\#73	0.0240	\#34	0.1110	5.4 mm	0.2126	8.7 mm	0.3425	13.0 mm	0.5118
\#72	0.0250	\#33	0.1130	\# 3	0.2130	11/32	0.3438	33/64	0.5156
\#71	0.0260	2.9 mm	0.1142	5.5 mm	0.2165	8.8 mm	0.3465	17/32	0.5313
\#70	0.0280	\#32	0.1160	7/32	0.2188	S	0.3480	35/64	0.5469
\#69	0.0292	3.0 mm	0.1181	5.6 mm	0.2205	8.9 mm	0.3504	14.0 mm	0.5512
\#68	0.0310	\#31	0.1200	\# 2	0.2210	9.0 mm	0.3543	9/16	0.5625
\#67	0.0320	3.1 mm	0.1220	5.7 mm	0.2244	T	0.3580	9/16	0.5625
\#66	0.0330	1/8	0.1250	\# 1	0.2280	9.1 mm	0.3583	37/64	0.5781
\#65	0.0350	3.2 mm	0.1260	5.8 mm	0.2283	23/64	0.3594	15.0 mm	0.5906
\#64	0.0360	\#30	0.1285	5.9 mm	0.2323	9.2 mm	0.3622	19/32	0.5938
\#63	0.0370	3.3 mm	0.1299	A	0.2340	9.3 mm	0.3661	5/8	0.6250
\#62	0.0380	3.4 mm	0.1339	15/64	0.2344	U	0.3680	16.0 mm	0.6299
\#61	0.0390	\#29	0.1360	6.0 mm	0.2362	9.4 mm	0.3701	17.0 mm	0.6693
1.0 mm	0.0394	3.5 mm	0.1378	B	0.2380	9.5 mm	0.3740	11/16	0.6875
\#60	0.0400	\#28	0.1405	6.1 mm	0.2402	3/ 8	0.3750	18.0 mm	0.7087
\#59	0.0410	9/64	0.1406	C	0.2420	v	0.3770	19.0 mm	0.7480
\#58	0.0420	3.6 mm	0.1417	6.2 mm	0.2441	9.6 mm	0.3780	3/4	0.7500
\#57	0.0430	\#27	0.1440	D	0.2460	9.7 mm	0.3819	49/64	0.7656
1.1 mm	0.0433	3.7 mm	0.1457	6.3 mm	0.2480	9.8 mm	0.3858	19.5 mm	0.7677
\#56	0.0465	\#26	0.1470	1/4	0.2500	W	0.3860	25/32	0.7812
1.2 mm	0.0472	\#25	0.1495	E	0.2500	9.9 mm	0.3898	20 mm	0.7874
1.3 mm	0.0512	3.8 mm	0.1496	6.4 mm	0.2520	25/64	0.3906	51/64	0.7969
\#55	0.0520	\#24	0.1520	6.5 mm	0.2559	10.0 mm	0.3937	20.5 mm	0.8071
\#54	0.0550	3.9 mm	0.1535	F	0.2570	x	0.3970	13/16	0.8125
1.4 mm	0.0551	\#23	0.1540	6.6 mm	0.2598	10.1 mm	0.3976	21 mm	0.8268
1.5 mm	0.0591	5/32	0.1563	G	0.2610	10.2 mm	0.4016	53/64	0.8281
\#53	0.0595	\#22	0.1570	6.7 mm	0.2638	Y	0.4040	27/32	0.8438
1/16	0.0625	4.0 mm	0.1575	17/64	0.2656	10.3 mm	0.4055	21.5 mm	0.8465
1.6 mm	0.0630	\#21	0.1590	H	0.2660	13/32	0.4063	55/64	0.8594
\#52	0.0635	\#20	0.1610	6.8 mm	0.2677	10.4 mm	0.4094	22 mm	0.8661
1.7 mm	0.0669	4.1 mm	0.1614	6.9 mm	0.2717	z	0.4130	7/8	0.8750
\#51	0.0670	4.2 mm	0.1654	I	0.2720	10.5 mm	0.4134	22.5 mm	0.8858
\#50	0.0700	\#19	0.1660	7.0 mm	0.2756	10.6 mm	0.4173	57/64	0.8906
1.8 mm	0.0709	4.3 mm	0.1693	J	0.2770	10.7 mm	0.4213	23 mm	0.9055
\#49	0.0730	\#18	0.1695	7.1 mm	0.2795	27/64	0.4219	29/32	0.9062
1.9 mm	0.0748	11/64	0.1719	K	0.2810	10.8 mm	0.4252	59/64	0.9219
\#48	0.0760	\#17	0.1730	9/32	0.2813	10.9 mm	0.4291	23.5 mm	0.9252
5/64	0.0781	4.4 mm	0.1732	7.2 mm	0.2835	11.0 mm	0.4331	15/16	0.9375
\#47	0.0785	\#16	0.1770	7.3 mm	0.2874	11.1 mm	0.4370	24 mm	0.9449
2.0 mm	0.0787	4.5 mm	0.1772	L	0.2900	7/16	0.4375	61/64	0.9531
\#46	0.0810	\#15	0.1800	7.4 mm	0.2913	11.2 mm	0.4409	24.5 mm	0.9646
\#45	0.0820	4.6 mm	0.1811	M	0.2950	11.3 mm	0.4449	31/32	0.9688
2.1 mm	0.0827	\#14	0.1820	7.5 mm	0.2953	11.4 mm	0.4488	25 mm	0.9843
\#44	0.0860	\#13	0.1850	19/64	0.2969	11.5 mm	0.4528	63/64	0.9844
2.2 mm	0.0866	4.7 mm	0.1850	7.6 mm	0.2992	29/64	0.4531	1	1.0000
\#43	0.0890	3/16	0.1875	N	0.3020	11.6 mm	0.4567	25.4	1.0000
2.3 mm	0.0906	\#12	0.1890	7.7 mm	0.3031	11.7 mm	0.4606		
\#42	0.0935	4.8 mm	0.1890	7.8 mm	0.3071	11.8 mm	0.4646		
3/32	0.0938	\#11	0.1910	7.9 mm	0.3110	11.9 mm	0.4685		
2.4 mm	0.0945	4.9 mm	0.1929	5/16	0.3125	15/32	0.4688		
\#41	0.0960	\#10	0.1935	8.0 mm	0.3150	12.0 mm	0.4724		
\#40	0.0980	\# 9	0.1960	\bigcirc	0.3160	12.1 mm	0.4764		
2.5 mm	0.0984	5.0 mm	0.1969	8.1 mm	0.3189	12.2 mm	0.4803		
\#39	0.0995	\# 8	0.1990	8.2 mm	0.3228	12.3 mm	0.4843		
\#38	0.1015	5.1 mm	0.2008	P	0.3230	31/64	0.4844		

Extended table of drill sizes

107	0.0019	. 85 mm	0.0335	40	0.0980	12	0.1890	M	0.2950
106	0.0023	65	0.0350	2.5 mm	0.0984	11	0.1910	7.5 mm	0.2953
105	0.0027	. 9 mm	0.0354	39	0.0995	4.9 mm	0.1929	19/64	0.2969
104	0.0031	64	0.0360	38	0.1015	10	0.1935	7.6 mm	0.2992
103	0.0035	63	0.0370	2.6 mm	0.1024	9	0.1960	N	0.3020
102	0.0039	. 95 mm	0.0374	37	0.1040	$5 . \mathrm{mm}$	0.1969	7.7 mm	0.3031
. 1 mm	0.0039	62	0.0380	2.7 mm	0.1063	8	0.1990	7.75 mm	0.3051
101	0.0043	61	0.0390	36	0.1065	5.1 mm	0.2008	7.8 mm	0.3071
100	0.0047	1 mm	0.0394	2.75 mm	0.1083	7	0.2010	7.9 mm	0.3110
99	0.0051	60	0.0400	7/64	0.1094	13/64	0.2031	5/16	0.3125
98	0.0055	59	0.0410	35	0.1100	6	0.2040	8 mm	0.3150
97	0.0059	1.05 mm	0.0413	2.8 mm	0.1102	5.2 mm	0.2047	0	0.3160
96	0.0063	58	0.0420	34	0.1110	5	0.2055	8.1 mm	0.3189
95	0.0067	57	0.0430	33	0.1130	5.25 mm	0.2067	8.2 mm	0.3228
94	0.0071	1.1 mm	0.0433	2.9 mm	0.1142	5.3 mm	0.2087	P	0.3230
93	0.0075	1.15 mm	0.0453	32	0.1160	4	0.2090	8.25 mm	0.3248
92	0.0079	56	0.0465	3 mm	0.1181	5.4 mm	0.2126	8.3 mm	0.3268
. 2 mm	0.0079	3/64	0.0469	31	0.1200	3	0.2130	21/64	0.3281
91	0.0083	1.2 mm	0.0472	3.1 mm	0.1181	5.5 mm	0.2165	8.4 mm	0.3307
90	0.0087	1.25 mm	0.0492	1/8	0.1250	7/32	0.2188	Q	0.3320
. 22 mm	0.0087	1.3mm	0.0512	30	0.1285	5.6 mm	0.2205	8.5 mm	0.3346
89	0.0091	55	0.0520	3.3 mm	0.1299	2	0.2211	8.6 mm	0.3386
88	0.0095	1.35 mm	0.0531	3.4 mm	0.1339	5.7 mm	0.2244	R	0.3390
. 25 mm	0.0098	54	0.0550	29	0.1360	5.75 mm	0.2264	8.7 mm	0.3425
87	0.0100	1.4 mm	0.0551	3.5 mm	0.1378	1	0.2280	11/32	0.3438
86	0.0105	1.45 mm	0.0571	28	0.1405	5.8 mm	0.2283	8.75 mm	0.3445
85	0.0110	1.5 mm	0.0591	9/64	0.1406	5.9 mm	0.2323	8.8 mm	0.3465
. 28 mm	0.0110	53	0.0595	3.6 mm	0.1417	A	0.2340	S	0.3480
84	0.0115	1.55 mm	0.0610	27	0.1440	15/64	0.2344	8.9 mm	0.3504
. 3 mm	0.0118	1/16	0.0625	3.7 mm	0.1457	6 mm	0.2362	9 mm	0.3543
83	0.0120	52	0.0635	26	0.1470	B	0.2380	T	0.3580
82	0.0125	1.65 mm	0.0650	3.75 mm	0.1476	6.1 mm	0.2402	9.1 mm	0.3583
. 32 mm	0.0126	1.7 mm	0.0669	25	0.1495	C	0.2420	23/64	0.3594
81	0.0130	51	0.0670	3.8 mm	0.1535	6.2 mm	0.2441	9.2 mm	0.3622
80	0.0135	1.75 mm	0.0689	24	0.1520	D	0.2460	9.25 mm	0.3642
. 35 mm	0.0138	50	0.0700	3.9 mm	0.1535	6.25 mm	0.2461	9.3 mm	0.3661
79	0.0145	1.8 mm	0.0709	23	0.1540	6.3 mm	0.2480	U	0.3680
1/64	0.0156	1.85 mm	0.0728	5/32	0.1562	1/4	0.2500	9.4 mm	0.3701
. 4 mm	0.0157	49	0.0730	22	0.1570	E	0.2500	9.5 mm	0.3740
78	0.0160	1.9 mm	0.0748	4 mm	0.1575	6.4 mm	0.2520	3/8	0.3750
. 45 mm	0.0177	48	0.0760	21	0.1590	6.5 mm	0.2559	V	0.3770
77	0.0180	1.95 mm	0.0768	20	0.1610	F	0.2570	9.6 mm	0.3780
. 5 mm	0.0197	5/64	0.0781	4.1 mm	0.1614	6.6 mm	0.2598	9.7 mm	0.3819
76	0.0200	2 mm	0.0787	4.2 mm	0.1654	G	0.2610	9.75 mm	0.3839
75	0.0210	2.05 mm	0.0807	19	0.1660	6.7 mm	0.2638	9.8 mm	0.3858
. 55 mm	0.0217	47	0.0785	4.25 mm	0.1673	17/64	0.2656	W	0.3860
74	0.0225	46	0.0810	4.3 mm	0.1693	6.75 mm	0.2657	9.9 mm	0.3898
. 6 mm	0.0236	45	0.0820	18	0.1695	H	0.2660	25/64	0.3906
73	0.0240	2.1 mm	0.0827	11/64	0.1719	6.8 mm	0.2677	10 mm	0.3937
72	0.0250	2.15 mm	0.0846	17	0.1730	6.9 mm	0.2717	x	0.3970
. 65 mm	0.0256	44	0.0860	4.4 mm	0.1732	I	0.2720	10.1 mm	0.3976
71	0.0260	2.2 mm	0.0866	16	0.1770	7 mm	0.2756	10.2 mm	0.4016
. 7 mm	0.0276	2.25 mm	0.0886	4.5 mm	0.1772	J	0.2770	Y	0.4040
70	0.0280	43	0.0890	15	0.1800	7.1 mm	0.2795	10.3 mm	0.4055
69	0.0292	2.3mm	0.0906	4.6 mm	0.1811	K	0.2810	13/32	0.4062
. 75 mm	0.0295	2.35 mm	0.0925	14	0.1820	9/32	0.2812	10.4 mm	0.4094
68	0.0310	42	0.0935	13	0.1850	7.2 mm	0.2835	Z	0.4130
1/32	0.0312	3/32	0.0938	4.7 mm	0.1850	7.25 mm	0.2854	10.5 mm	0.4134
. 8 mm	0.0315	2.4 mm	0.0945	4.75 mm	0.1870	7.3 mm	0.2874	10.6 mm	0.4173
67	0.0320	41	0.0960	3/16	0.1875	L	0.2900	10.7 mm	0.4213
66	0.0330	2.45 mm	0.0965	4.8 mm	0.1890	7.4 mm	0.2913	27/64	0.4219

10.8 mm	0.4252	16 mm	0.6299	21.2 mm	0.8346
10.9 mm	0.4291	16.1 mm	0.6339	21.3 mm	0.8386
11 mm	0.4331	16.2 mm	0.6378	21.4 mm	0.8425
11.1 mm	0.4370	41/64	0.6406	27/32	0.8438
7/16	0.4375	16.3 mm	0.6417	21.5 mm	0.8465
11.2 mm	0.4409	16.4 mm	0.6457	21.6 mm	0.8504
11.3 mm	0.4449	16.5 mm	0.6496	21.7 mm	0.8543
11.4 mm	0.4488	16.6 mm	0.6535	21.8 mm	0.8583
11.5 mm	0.4528	21/32	0.6562	55/64	0.8594
29/64	0.4531	16.7 mm	0.6575	21.9 mm	0.8622
11.6 mm	0.4567	16.8 mm	0.6614	22 mm	0.8661
11.7 mm	0.4606	16.9 mm	0.6654	22.1 mm	0.8701
11.8 mm	0.4646	17 mm	0.6693	22.2 mm	0.8740
11.9 mm	0.4685	43/64	0.6719	7/8	0.8750
15/32	0.4688	17.1 mm	0.6732	22.3 mm	0.8780
12 mm	0.4724	17.2 mm	0.6772	22.4 mm	0.8819
12.1 mm	0.4764	17.3 mm	0.6811	22.5 mm	0.8858
12.2 mm	0.4803	17.4 mm	0.6850	22.6 mm	0.8898
12.3 mm	0.4843	11/16	0.6875	57/64	0.8906
31/64	0.4844	17.5 mm	0.6890	22.7 mm	0.8937
12.4 mm	0.4882	17.6 mm	0.6929	22.8 mm	0.8976
12.5 mm	0.4921	17.7 mm	0.6969	22.9 mm	0.9016
12.6 mm	0.4961	17.8 mm	0.7008	23 mm	0.9055
1/2	0.5000	45/64	0.7031	29/32	0.9062
12.7 mm	0.5000	17.9 mm	0.7047	23.1 mm	0.9094
12.8 mm	0.5039	18 mm	0.7087	23.2 mm	0.9134
12.9 mm	0.5079	18.1 mm	0.7126	23.3 mm	0.9173
13 mm	0.5118	18.2 mm	0.7165	23.4 mm	0.9213
33/64	0.5156	23/32	0.7188	59/64	0.9219
13.1 mm	0.5157	18.3 mm	0.7205	23.5 mm	0.9252
13.2 mm	0.5197	18.4 mm	0.7244	23.6 mm	0.9291
13.3 mm	0.5236	18.5 mm	0.7283	23.7 mm	0.9331
13.4 mm	0.5276	18.6 mm	0.7323	23.8 mm	0.9370
17/32	0.5312	47/64	0.7344	15/16	0.9375
13.5 mm	0.5315	18.7 mm	0.7362	23.9 mm	0.9409
13.6 mm	0.5354	18.8 mm	0.7402	24 mm	0.9449
13.7 mm	0.5394	18.9 mm	0.7441	24.1 mm	0.9488
13.8 mm	0.5433	19 mm	0.7480	24.2 mm	0.9528
35/64	0.5469	3/4	0.7500	61/64	0.9531
13.9 mm	0.5472	19.1 mm	0.7520	24.3 mm	0.9567
14 mm	0.5512	19.2 mm	0.7559	24.4 mm	0.9606
14.1 mm	0.5551	19.3 mm	0.7598	24.5 mm	0.9646
14.2 mm	0.5591	19.4 mm	0.7638	24.6 mm	0.9685
9/16	0.5625	49/64	0.7656	31/32	0.9688
14.3 mm	0.5630	19.5 mm	0.7677	24.7 mm	0.9724
14.4 mm	0.5669	19.6 mm	0.7717	24.8 mm	0.9764
14.5 mm	0.5709	19.7 mm	0.7756	24.9 mm	0.9803
14.6 mm	0.5748	19.8 mm	0.7795	25 mm	0.9843
37/64	0.5781	25/32	0.7812	63/64	0.9844
14.7 mm	0.5787	19.9 mm	0.7835	25.1	0.9882
14.8 mm	0.5827	20 mm	0.7874	25.2	0.9921
14.9 mm	0.5866	20.1 mm	0.7913	25.3	0.9961
15 mm	0.5906	20.2 mm	0.7953	1	1.0000
19/32	0.5938	51/64	0.7969	25.4	1.0000
15.1 mm	0.5945	20.3 mm	0.7992		
15.2 mm	0.5984	20.4 mm	0.8031		
15.3 mm	0.6024	20.5 mm	0.8071		
15.4 mm	0.6063	20.6 mm	0.8110		
39/64	0.6094	13/16	0.8125		
15.5 mm	0.6102	20.7 mm	0.8150		
15.6 mm	0.6142	20.8 mm	0.8189		
15.7 mm	0.6181	20.9 mm	0.8228		
15.8 mm	0.6220	21 mm	0.8268		
5/8	0.6250	53/64	0.8281		
15.9 mm	0.6260	21.1 mm	0.8307		

